

Exercises 7: Viscoelasticity

7.1: A mass G is suspended to a plastic fiber. The fiber consists of an incompressible, viscoelastic material. In its unloaded state, the fiber has a cross section A_0 and a length L_0 .

The viscoelastic equation of state of the true fiber tension

$\sigma = G/A(\varepsilon)$ with $A(\varepsilon)$ the instantaneous cross section
and the extension $\varepsilon = (L - L_0)/L_0$,
 L as instantaneous fiber length

is described by the Kelvin-Voigt Model with a spring constant E and a viscosity η .

For which mass G is the strain rate constant? What is then the resulting dL/dt ?

7.2: Use the Maxwell model analysis of stress relaxation to estimate the longest relaxation time for the highest molecular weight sample in the plot of the stress relaxation modulus $G(t)$ versus time t on page 3 of the lecture notes [$G = 3 \times 10^6$ dyn/cm² (plateau value) $M = 4.6 \times 10^5$ g/mol, $\eta = 5.5 \times 10^{11}$ P (= g/cm s)]

7.3: Use the BSM to estimate the longest relaxation time for polystyrene with $M = 10^6$ g/mol in cyclohexane at the theta temperature (35°C). The values of D_t and $[\eta]$ are given as a function of M for this system in Figure 1 and Figure 2 respectively. (viscosity of cyclohexane is 0.8 cP).

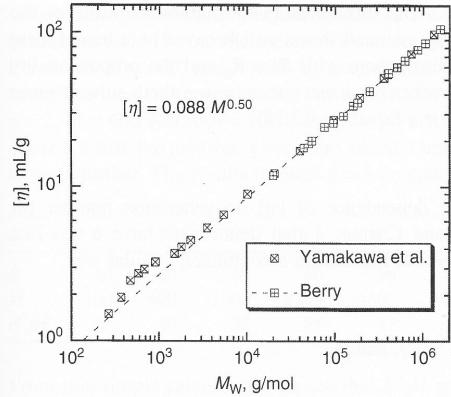


Figure 1: for $M = 10^6$ use $[\eta] = 84$ mL/g

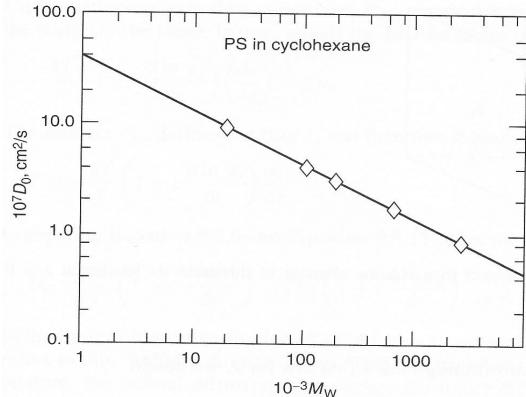


Figure 2: for $M = 10^6$ is $D_t \approx 10^{-7}$ cm²/s

7.4: You are an engineer in charge of a polystyrene drinking cup manufacturing plant. Normally, you process the material at 160°C, where the viscosity of the polymer melt is 1.5×10^3 poises when $Z_w = 800$ (Note that $Z_{c,w}$ for polystyrene is 730). Today, your polystyrene has $Z_w = 950$. What change in processing temperature will bring down the viscosity to the initial value of 1.5×10^3 poises? T_g for polystyrene is 100°C. (Note: Use the universal constants for the Williams-Landel-Ferry equation $C_1 = 17.44$, $C_2 = 51.6$)

The following relationship exists between the melt viscosity of the polymer and its length:

$$\eta = K_H (Z_w)^{3.4}.$$

With Z the number of atoms along the polymer chain's backbone.

With $Z_{c,w}$ as critical entanglement chain length: weight average number of chain atoms in the polymer molecules